Exploring the potential of reed as a biofuel crop in the Netherlands

Vasco Diogo (SPINIab, VU Amsterdam)
Tom Kuhlman (LEI, WUR)
Eric Koomen (SPINIab, VU Amsterdam)

Outline

- Introduction
 - Reed as a bioenergy crop
 - Potential for reed in the Netherlands?
- Methodology
 - Spatial exploration: simulating future land-use
 - Economics of reed cultivation
 - Scenarios
- Results
- Conclusions

Introduction

- EU Directive on Renewable Energy targets by 2020:
 - 20% of total energy consumption
 - 10% of total transport fuel consumption
- Reed as a bioenergy crop:
 - Combustion for district heating and electricity generation
 - Biogas (co-digestion with manure)
 - Bioethanol (2nd generation biofuel)

Potential for reed in the Netherlands?

- Indigenous in the Netherlands
- Grows well in wet areas
 - Salt tolerance
 - Suitable for peat soils
- Bioenergy crops are generally low-value products best grown on a large scale
- However, the Netherlands is a densely populated country with high pressure on land and an advanced agricultural sector specialized in highvalue crops

Spatial exploration

 simulation of local competition for land according to economic performance

Economics of reed as bioenergy crop

- Yield (dry biomass): 15 t.ha⁻¹.yr⁻¹ without fertilizer
- Gross revenues (€.ha⁻¹.yr⁻¹):
 - Ethanol 1,151
 - Combustion 475
 - Biogas 625
 - Total production costs (€.ha-1.yr-1)
 - Ethanol 2,387
 - Combustion 1,285
 - Biogas 1,900

Reed as a multifunctional land-use

- Water buffering
 - Integrated water management water storage during floods and dry periods
- Surface water purification
 - Absorption of nitrates and phosphates
- Carbon sequestration above and below ground
- Avoids peat oxidation
 - Subsidence
 - CO₂ emission (loss of organic matter)
 - Risk of saline seepage

Peat soils in the Netherlands

Economics of multi-functional reed cultivation

Additional benefits (€.ha⁻¹.yr⁻¹, based in previous cost-benefit analysis):

Water storage (where applicable): 400

Water purification: 400

Net effect on GHG emissions:

Net effect on GHG emissions in peat soils: 271

Scenarios for 2030

Based on a previous study for EC's DG-ENV

- 1. Reference: IPCC B1
 - Ongoing policies, incl. liberalization of agricultural trade
- 2. High oil prices and strong climate change
- 3. Biofuel policies
 - Promotion of biofuels in EU and rest of the world
- 4. Soil protection and climate mitigation policies
 - Increased promotion of water buffering and sustainable use of peat soils

Results

Scenario 1: IPCC B1

Scenario 2: High oil prices & climate change

Results

Scenario 3: Biofuel policy

Scenario 4: Soil protection and climate change adaptation

Conclusions

- Reed cultivation for energy purposes not economically viable in the Netherlands under current conditions
- Only attractive if benefits from additional functions are also taken into account
 - Particularly in peat soils
- Future developments in terms of energy prices, climate change and policies may make reed more economically attractive
 - Combination of biofuel policies with environmental measures

Conclusions

- Two systems of reed cultivation could be envisaged:
- 1) Large-scale dedicated cultivation of reed in specialized farms
 - However, landscape issues should be taken into account
- 2) Combination of livestock production and reed cultivation
 - Small-scale production of biogas through co-digestion of reed and manure

Thank you

Kuhlman, T., Diogo, V. and Koomen, E. (2013) Exploring the potential of reed as a bioenergy crop in the Netherlands. Biomass and Bioenergy. DOI:10.1016/j.biombioe. 2012.06.024

